Abstract
In this paper we propose feature selection and machine learning approaches to identify a combination of features for risk prediction of Temporomandibular Joint (TMJ) disease progression. In a sample of 32 TMJ osteoarthritis and 38 controls, feature selection of 5 clinical comorbidities, 43 quantitative imaging, 28 biological features and was performed using Maximum Relevance Minimum Redundancy, Chi-Square and Least Absolute Shrinkage and Selection Operator (LASSO) and Recursive Feature Elimination. We compared the performance of learning using concave and convex kernels (LUCCK), Support Vector Machine (SVM) and Random Forest (RF) approaches to predict disease cure/improvement or persistence/worsening. We show that the SVM model using LASSO achieves area under the curve (AUC), sensitivity and precision of 0.92±0.08, 0.85±0.19 and 0.76 ±0.18, respectively. Baseline levels of headaches, lower back pain, restless sleep, muscle soreness, articular fossa bone surface/bone volume and trabecular separation, condylar High Gray Level Run Emphasis and Short Run High Gray Level Emphasis, saliva levels of 6Ckine, Osteoprotegerin (OPG) and Angiogenin, and serum levels of 6ckine and Brain Derived Neurotrophic Factor (BDNF) were the most frequently occurring features to predict more severe TMJ osteoarthritis prognosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of SPIE--the International Society for Optical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.