Abstract
Highly flexible regulation of photosynthetic light reactions in plant chloroplasts is a prerequisite to provide sufficient energy flow to downstream metabolism and plant growth, to protect light reactions against photodamage, and to ensure controlled cellular signaling from the chloroplast to the nucleus. Such comprehensive regulation occurs via the control of excitation energy transfer to and between the two photosystems (PSII and PSI), of the electrochemical gradient across the thylakoid membrane (ΔpH), and of electron transfer from PSII to PSI electron acceptors. In this opinion article, we propose that these regulatory mechanisms, functioning at different levels of photosynthetic energy conversion, might be interconnected and describe how the concomitant and integrated function of these mechanisms might enable plants to acclimate to a full array of environmental changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.