Abstract

Beta-thalassemia results from mutations of the β-hemoglobin (Hbb) gene and reduced functional Hbb synthesis. Excess α-Hb causes globin chain aggregation, oxidation, cytoskeletal damage, and increased red blood cell clearance. These events result in anemia, altered iron homeostasis, and expansion of extramedullary erythropoiesis. Serum transferrin (Tf) is suggested to be an important regulator of erythropoiesis in murine models of thalassemia. The present study was conducted to establish a quantitative proteomic and transcriptomic analysis of transferrin-modulated extramedullary erythropoiesis in the spleen of wild type and thalassemic Hbb(th3/+) mice. Our LC-MS/MS protein analysis and mRNA sequencing data provide quantitative expression estimates of 1590 proteins and 24,581 transcripts of the murine spleen and characterize key processes of erythropoiesis and RBC homeostasis such as the whole heme synthesis pathway as well as critical components of the red blood cell antioxidant systems and the proliferative cell cycling pathway. The data confirm that Tf treatment of nontransfused Hbb(th3/+) mice induces a systematic correction of these processes at a molecular level. Tf treatment of Hbb(th3/+) mice for 60 days leads to a complete molecular restoration of the normal murine spleen phenotype. These findings support further investigation of plasma-derived Tf as a treatment for thalassemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.