Abstract
Network embedding is to learn a low-dimensional representation for a network in order to capture intrinsic features of the network. It has been applied to many applications, e.g., network community detection and user recommendation. One of the recent research topics for network embedding has been focusing on exploitation of diverse information, including network topology and semantic information on nodes of networks. However, such diverse information has not been fully utilized nor adequately integrated in the existing methods, so that the resulting network embedding is far from satisfactory. In this paper, we develop a weight-free multi-component network embedding approach by network reconstruction via a deep Autoencoder. Three key components make our new approach effective, i.e., a uniformed graph representation of network topology and semantic information, enhancement to the graph representation using local network structure (i.e., pairwise relationship on nodes) by sampling with latent space regularization, and integration of the diverse information in graph forms in a deep Autoencoder. Extensive experimental results on seven real-world networks demonstrate a superior performance of our method over nine state-of-the-art methods for embedding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.