Abstract

BackgroundRadiation-induced skin injury is a serious concern during radiotherapy and accidental exposure to radiation. ObjectiveThis study aims to investigate the molecular events in early response to ionizing radiation of skin tissues and underlying mechanism. MethodsMice and rats were irradiated with an electron beam. Skin tissues were used for liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, mRNA-Seq and single-cell RNA sequencing (scRNA-Seq). Human keratinocytes (HaCaT) and skin fibroblasts (WS1) were used for functional studies. ResultsThe integrated analysis of metabolomics and transcriptomics showed that 6 key fatty acid-associated metabolites, 9 key fatty acid-associated genes and multiple fatty acid-associated pathways were most obviously enriched and increased in the irradiated skins. Among them, acyl-CoA dehydrogenase very long chain (ACADVL) was investigated in greater detail due to its most obvious expression difference and significance in fatty acid metabolism. ScRNA-Seq of rat skin from irradiated individuals revealed that ACADVL was expressed in all subpopulations of skin tissues, with variations at different timepoints after radiation. Immunohistochemistry confirmed an increased ACADVL expression in the epidermis from human sample and various animal models, including monkeys, rats and mice. The knockdown of ACADVL increased the radiosensitivity of human keratinocytes and human skin fibroblasts. Silencing of ACADVL facilitated the expression of apoptosis and pyroptosis-related proteins following ionizing radiation. ConclusionThis study illustrated that cutaneous fatty acid metabolism was altered in the early response of ionizing radiation, and fatty acid metabolism-associated ACADVL is involved in radiation-induced cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.