Abstract

Magnetically levitated train's (MLT) motor's traction force realization (TFR) occurs in the process of electromechanical energy transformation by inductor's and armature's magnetic fields interaction. Accordingly, the aim of this study is to obtain a correct description of such energy transformation. At the present stage, a mathematical and, in particular, computer simulation is the main and most universal tool of process’s and system's analysis and synthesis. At the same time, a radical advantage of this tool makes it even more important precision selecting a particular methodology of the study . Especially important it is for such a large and complex system, which is an MLT. Therefore the special attention in the work is given to the reasoned choice and substantiation of research paradigm's selective features. The results of analysis of existing versions of TFR process model indicate that each of these versions possesses both advantages and disadvantages. Therefore, one of the main results of this study should be the creation of a mentioned process's mathematical model's new version. The created version of the model should preserve the advantages of previous versions, but to be free of their disadvantages. The rationality of application, for the purposes of motor's TFR process research, of the integrative holistic paradigm was convincingly proved in the work. The priority of creation of such paradigm and corresponding version of the TFR process model constitute the scientific novelty of research . The main manifestation of practical value of this research in the opportunity, in case of use of its results, of a significant increasing of efficiency of MLT's dynamic investigations, on the condition that their generalized costs will not increase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.