Abstract

The closely related transcription factors (TFs), estrogen receptors ERα and ERβ, regulate divergent gene expression programs and proliferative outcomes in breast cancer. Utilizing breast cancer cells with ERα, ERβ, or both receptors as a model system to define the basis for differing response specification by related TFs, we show that these TFs and their key coregulators, SRC3 and RIP140, generate overlapping as well as unique chromatin-binding and transcription-regulating modules. Cistrome and transcriptome analyses and the use of clustering algorithms delineated 11 clusters representing different chromatin-bound receptor and coregulator assemblies that could be functionally associated through enrichment analysis with distinct patterns of gene regulation and preferential coregulator usage, RIP140 with ERβ and SRC3 with ERα. The receptors modified each other's transcriptional effect, and ERβ countered the proliferative drive of ERα through several novel mechanisms associated with specific binding-site clusters. Our findings delineate distinct TF-coregulator assemblies that function as control nodes, specifying precise patterns of gene regulation, proliferation, and metabolism, as exemplified by two of the most important nuclear hormone receptors in human breast cancer.

Highlights

  • Following an inquiry from the journal Molecular Systems Biology regarding the presentation of data in Fig 7A, the authors and the journal have examined this figure and the original data upon which it was based

  • The specific conclusions stating that ERb exerts an effect on MAPK signaling cannot be supported by these data

  • All authors concur with this statement and wish to apologize for the inconvenience caused

Read more

Summary

Introduction

Following an inquiry from the journal Molecular Systems Biology regarding the presentation of data in Fig 7A, the authors and the journal have examined this figure and the original data upon which it was based. Integrative genomics of gene and metabolic regulation by estrogen receptors a and b, and their coregulators

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call