Abstract

BackgroundBreast cancer is a heterogeneous disease at the clinical and molecular level. In this study we integrate classifications extracted from five different molecular levels in order to identify integrated subtypes.MethodsTumor tissue from 425 patients with primary breast cancer from the Oslo2 study was cut and blended, and divided into fractions for DNA, RNA and protein isolation and metabolomics, allowing the acquisition of representative and comparable molecular data. Patients were stratified into groups based on their tumor characteristics from five different molecular levels, using various clustering methods. Finally, all previously identified and newly determined subgroups were combined in a multilevel classification using a “cluster-of-clusters” approach with consensus clustering.ResultsBased on DNA copy number data, tumors were categorized into three groups according to the complex arm aberration index. mRNA expression profiles divided tumors into five molecular subgroups according to PAM50 subtyping, and clustering based on microRNA expression revealed four subgroups. Reverse-phase protein array data divided tumors into five subgroups. Hierarchical clustering of tumor metabolic profiles revealed three clusters. Combining DNA copy number and mRNA expression classified tumors into seven clusters based on pathway activity levels, and tumors were classified into ten subtypes using integrative clustering. The final consensus clustering that incorporated all aforementioned subtypes revealed six major groups. Five corresponded well with the mRNA subtypes, while a sixth group resulted from a split of the luminal A subtype; these tumors belonged to distinct microRNA clusters. Gain-of-function studies using MCF-7 cells showed that microRNAs differentially expressed between the luminal A clusters were important for cancer cell survival. These microRNAs were used to validate the split in luminal A tumors in four independent breast cancer cohorts. In two cohorts the microRNAs divided tumors into subgroups with significantly different outcomes, and in another a trend was observed.ConclusionsThe six integrated subtypes identified confirm the heterogeneity of breast cancer and show that finer subdivisions of subtypes are evident. Increasing knowledge of the heterogeneity of the luminal A subtype may add pivotal information to guide therapeutic choices, evidently bringing us closer to improved treatment for this largest subgroup of breast cancer.

Highlights

  • Breast cancer is a heterogeneous disease at the clinical and molecular level

  • An overview of the clinicopathological data on the patients is provided in Additional file 2b and the tumor sample classifications are listed in Additional file 1b

  • PAM50 gene expression subtypes Tumor samples with mRNA expression data available were classified into gene expression-based subtypes based on the PAM50 model [20] (Fig. 1a)

Read more

Summary

Introduction

Breast cancer is a heterogeneous disease at the clinical and molecular level. Separation of breast tumors into different groups has been used to identify subgroups of the disease, which assists patient management. At the gene expression level, five main subgroups have been identified [1, 2], and combining gene expression with copy number data further refined breast cancer into 10 integrated subgroups with different genomic and transcriptomic profiles and prognosis [3]. Integrating classifications extracted from four different levels (mRNA, microRNA (miRNA) expression, DNA copy number and methylation) revealed new insights into the biology and immune profile of pre-invasive and invasive breast cancers [5], while metabolic analyses have revealed three naturally occurring clusters with distinct metabolic profiles [6]. Exploring the causes and consequences of breast cancer at a higher level may lead to refined therapeutic strategies

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.