Abstract

ABSTRACTDNA molecules are highly compacted in the eukaryotic nucleus where distal regulatory elements reach their targets through three-dimensional chromosomal interactions. G-quadruplexes, stable four-stranded non-canonical DNA structures, can change local chromatin organization through the exclusion of nucleosomes. However, the relationship between G-quadruplexes and higher-order genome organization remains unknown. Here, we found that G-quadruplexes are significantly enriched at boundaries of topological associated domains (TADs). Architectural protein occupancy, which plays critical roles in the formation of TADs, was highly correlated with the content of G-quadruplexes at TAD boundaries. Moreover, adjacent boundaries containing G-quadruplexes frequently interacted with each other because of the high enrichment of architectural protein binding sites. Similar to CCCTC-binding factor (CTCF) binding sites, G-quadruplexes also showed strong insulation ability in the separation of adjacent regions. Additionally, the insulation ability of CTCF binding sites and TAD boundaries was significantly reinforced by G-quadruplexes. Furthermore, G-quadruplex motifs on different strands were associated with the orientation of CTCF binding sites. These findings suggest a potential role for G-quadruplexes in loop extrusion. The enrichment of transcription factor binding sites (TFBSs) around regulatory elements containing G-quadruplexes led to frequent interactions between regulatory elements containing G-quadruplexes. Intriguingly, more than 99% of G-quadruplexes overlapped with TFBSs. The binding sites of CTCF and cohesin proteins were preferentially located surrounding G-quadruplexes. Accordingly, we proposed a new mechanism of long-distance gene regulation in which G-quadruplexes are involved in distal interactions between enhancers and promoters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.