Abstract

BackgroundInferring gene regulatory networks is one of the most interesting research areas in the systems biology. Many inference methods have been developed by using a variety of computational models and approaches. However, there are two issues to solve. First, depending on the structural or computational model of inference method, the results tend to be inconsistent due to innately different advantages and limitations of the methods. Therefore the combination of dissimilar approaches is demanded as an alternative way in order to overcome the limitations of standalone methods through complementary integration. Second, sparse linear regression that is penalized by the regularization parameter (lasso) and bootstrapping-based sparse linear regression methods were suggested in state of the art methods for network inference but they are not effective for a small sample size data and also a true regulator could be missed if the target gene is strongly affected by an indirect regulator with high correlation or another true regulator.ResultsWe present two novel network inference methods based on the integration of three different criteria, (i) z-score to measure the variation of gene expression from knockout data, (ii) mutual information for the dependency between two genes, and (iii) linear regression-based feature selection.Based on these criterion, we propose a lasso-based random feature selection algorithm (LARF) to achieve better performance overcoming the limitations of bootstrapping as mentioned above.ConclusionsIn this work, there are three main contributions. First, our z score-based method to measure gene expression variations from knockout data is more effective than similar criteria of related works. Second, we confirmed that the true regulator selection can be effectively improved by LARF. Lastly, we verified that an integrative approach can clearly outperform a single method when two different methods are effectively jointed. In the experiments, our methods were validated by outperforming the state of the art methods on DREAM challenge data, and then LARF was applied to inferences of gene regulatory network associated with psychiatric disorders.

Highlights

  • Inferring gene regulatory networks is one of the most interesting research areas in the systems biology

  • In order to decipher regulatory interactions with gene microarray data, which provides the gene expression level regulated by the other genes directly or indirectly, the number of effective network inference methods have been proposed by employing a variety of computational and structural models based on boolean networks [10], Bayesian networks [11], information theory [12], regression model [13], and so on

  • We first evaluated the performance of IMLARF and ISLARF on synthetic simulation data as compared to the state of the art, and explored the inferred networks with real gene microarray data for psychiatric disorders

Read more

Summary

Introduction

Inferring gene regulatory networks is one of the most interesting research areas in the systems biology. Depending on the structural or computational model of inference method, the results tend to be inconsistent due to innately different advantages and limitations of the methods. Inferring gene regulatory networks (GRN) from biological data is currently the most interesting area of the systems biology research aiming to elucidate cellular and physiological mechanisms. In order to decipher regulatory interactions with gene microarray data, which provides the gene expression level regulated by the other genes directly or indirectly, the number of effective network inference methods have been proposed by employing a variety of computational and structural models based on boolean networks [10], Bayesian networks [11], information theory [12], regression model [13], and so on. We note that they conclude two points through the experiments that (i) there is a limit to a single criterion for continuous improvement of network inference research without the integration and (ii) the bootstrapping (re-sampling) based regression method [16] is required to avoid overfitting in regression-based methods [15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.