Abstract

BackgroundType 1 diabetes (T1D) is an autoimmune disease, while type 2 (T2D) and gestational diabetes (GDM) are considered metabolic disturbances. In a previous study evaluating the transcript profiling of peripheral mononuclear blood cells obtained from T1D, T2D and GDM patients we showed that the gene profile of T1D patients was closer to GDM than to T2D. To understand the influence of demographical, clinical, laboratory, pathogenetic and treatment features on the diabetes transcript profiling, we performed an analysis integrating these features with the gene expression profiles of the annotated genes included in databases containing information regarding GWAS and immune cell expression signatures.MethodsSamples from 56 (19 T1D, 20 T2D, and 17 GDM) patients were hybridized to whole genome one-color Agilent 4x44k microarrays. Non-informative genes were filtered by partitioning, and differentially expressed genes were obtained by rank product analysis. Functional analyses were carried out using the DAVID database, and module maps were constructed using the Genomica tool.ResultsThe functional analyses were able to discriminate between T1D and GDM patients based on genes involved in inflammation. Module maps of differentially expressed genes revealed that modulated genes: i) exhibited transcription profiles typical of macrophage and dendritic cells; ii) had been previously associated with diabetic complications by association and by meta-analysis studies, and iii) were influenced by disease duration, obesity, number of gestations, glucose serum levels and the use of medications, such as metformin.ConclusionThis is the first module map study to show the influence of epidemiological, clinical, laboratory, immunopathogenic and treatment features on the transcription profiles of T1D, T2D and GDM patients.

Highlights

  • Type 1 diabetes (T1D) is an autoimmune disease, while type 2 (T2D) and gestational diabetes (GDM) are considered metabolic disturbances

  • Diabetes mellitus has been classified into type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), as well as other types of diabetes, including genetic defects in β-cell function, genetic defects in insulin action, diseases of the exocrine pancreas, endocrinopathies, drug- or chemical-induced forms, infection-induced diabetes, uncommon forms of immunemediated diabetes, and other genetic syndromes associated with diabetes [2]

  • Global analysis of the data set with density-based filter and Markov clustering (DBF-Markov Clustering Algorithm (MCL)) and principal component analysis (PCA) A list of 8,469 genes obtained from global partitioning analysis (DBF-MCL method applying a non-informative filter) yielded informative non-supervised clusters of co-regulated genes

Read more

Summary

Introduction

Type 1 diabetes (T1D) is an autoimmune disease, while type 2 (T2D) and gestational diabetes (GDM) are considered metabolic disturbances. To understand the influence of demographical, clinical, laboratory, pathogenetic and treatment features on the diabetes transcript profiling, we performed an analysis integrating these features with the gene expression profiles of the annotated genes included in databases containing information regarding GWAS and immune cell expression signatures. Diabetes mellitus has been classified into type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), as well as other types of diabetes, including genetic defects in β-cell function, genetic defects in insulin action, diseases of the exocrine pancreas, endocrinopathies, drug- or chemical-induced forms, infection-induced diabetes, uncommon forms of immunemediated diabetes, and other genetic syndromes associated with diabetes [2]. Pregnant women with gestational diabetes have an increased risk of developing T2D, suggesting a close relationship between these types [3,4]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.