Abstract

The intestinal microbiota contributes to host metabolism and health. This study aimed to assess the effects of biochar on cecal microbiome-related metabolic changes in rats. Rats were orally administered rice straw biochar (RSB) at 1120 mg/kg body weight for 5 weeks. Cecal samples were analyzed to perform metabolic and microbial profiling via a combination of 16S rRNA gene sequencing and LC/MS techniques. We observed a significant influence of RSB in shaping the cecal bacterial community, including some potentially beneficial members of phylum Firmicutes belonging to unclassified Lachnospiraceae, Oscillibacter, and Clostridium XlVa and IV, as well as the depletion of some opportunistic pathogens belonging to Prevotella, Bacteroides and Paraprevotella. The metabolomic analysis revealed distinct changes in the cecal metabolic phenotype, including lower levels of L-isoleucine, indole-3-acetic acid, benzoic acid, and tetradecanoic acid as well as higher levels of L-phenylalanine, L-glutamate, 3-phenylpropanoic acid, chenodeoxycholic acid, cholic acid, 7-dehydrocholesterol, (5Z, 8Z, 11Z, 14Z, 17Z)-eicosapentaenoic acid, 11-deoxycorticosterone and retinol, which are mainly involved in the metabolic pathways of linoleic acid, amino acid and steroid hormone biosynthesis. Correlation analysis revealed a positive association of unclassified Lachnospiraceae, Oscillibacter and Clostridium IV with 3-phenylpropanoic acid, L-phenylalanine, L-glutamate, 11-deoxycorticosterone and 7-dehydrocholesterol. These results confirm that the gut microbiome is altered and may be critical for good performance under RSB application by interacting with metabolism.

Highlights

  • The intestinal microbiota is composed of an extremely large number of different bacteria that produce a variety of metabolites, are exclusively responsible for microbe selection and are involved in important metabolic functions, such as the biosynthesis and biotransformation of amino acids and bile acid[1]

  • We probe the cecal microbiome-related metabolic changes in rats following the dietary inclusion of rice straw biochar (RSB) by employing high-throughput sequencing and liquid chromatography coupled to mass spectrometry (LC-MS)

  • The percentages of unclassified Lachnospiraceae (34.78% of all reads, 1079 operational taxonomic units (OTUs)), Oscillibacter (1.19% of all reads, 37 OTUs), Clostridium IV (0.84 of all reads, 26 OTUs) and Clostridium XlVa (0.42% of all reads, 13 OTUs) in the RSB group were markedly increased by 172.68% (P < 0.05), 67.48% (P < 0.05), 117.5% (P < 0.05) and 436.36% (P < 0.05), respectively

Read more

Summary

Introduction

The intestinal microbiota is composed of an extremely large number of different bacteria that produce a variety of metabolites, are exclusively responsible for microbe selection and are involved in important metabolic functions, such as the biosynthesis and biotransformation of amino acids and bile acid[1] Factors such as changes in nutritional interventions, host condition, radiation and toxicological insult can induce microbial regulation[2] and affect host health. Biochar is one kind of carbonaceous adsorbent, produced by the degradation of organic matter from agricultural waste in an oxygen-limited, anaerobic environment[8] This productive process makes biochar rich in micronutrients and forms a large surface area and more optimal macropores. We probe the cecal microbiome-related metabolic changes in rats following the dietary inclusion of rice straw biochar (RSB) by employing high-throughput sequencing and liquid chromatography coupled to mass spectrometry (LC-MS)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.