Abstract

ObjectiveWe used evidence-based medicine, bioinformatics and experimental verification to comprehensively analyze the efficacy and pharmacological mechanism of Xuefu Zhuyu decoction (XFZYD) in the treatment of idiopathic pulmonary fibrosis (IPF). MethodsMajor databases were retrieved for randomized controlled trials (RCTs) of XFZYD treating IPF to perform meta-analysis. Active ingredients and target genes of XFZYD were identified from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). IPF-related differentially expressed genes (DEGs) were identified from the Gene Expression Omnibus (GEO) database. The RGUI software was utilized for Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The ingredient-target and protein-protein interaction (PPI) networks were achieved through Cytoscape software and the STRING database to identify the key compounds and target proteins. Molecular docking was performed using AutoDockTool and AutoDock Vina software. The effect between key compounds and target proteins was verified in animal experiments. ResultsSix RCTs were included for meta-analysis, which uncovered that the total effective rate of clinical efficacy was higher in the experimental group than control group. Then, 156 active ingredients and 254 target genes of XFZYD, and 1,566 IPF-related DEGs were identified. The intersection analysis identified 48 target genes correlating with 130 active ingredients of XFZYD treating IPF. GO functional enrichment, KEGG pathway enrichment, ingredient-target network and PPI network were achieved. Following the identification of key compounds and target proteins, we performed molecular docking. Ultimately, our research focused on the key compound quercetin for experimental validation to assess its interactions with two key target proteins, JUN and PTGS2. ConclusionThe effectiveness of XFZYD on IPF has been substantiated through evidence-based medicine. The pharmacological mechanism of XFZYD for IPF treatment involves a complex interplay of various compounds and targets, with quercetin exerting pronounced impacts on JUN and PTGS2 proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.