Abstract

BackgroundAbdominal aortic aneurysm (AAA) is a complex vascular disorder characterized by the progressive dilation of the abdominal aorta, with a high risk of rupture and mortality.Understanding the cellular interactions and molecular mechanisms underlying AAA development is critical for identifying potential therapeutic targets. MethodsThis study utilized datasets GSE197748, GSE164678 and GSE183464 from the GEO database, encompassing bulk and single-cell RNA sequencing data from AAA and control samples. We performed principal component analysis, differential expression analysis, and functional enrichment analysis to identify key pathways involved in AAA. Cell-cell interactions were investigated using CellPhoneDB, focusing on fibroblasts, vascular smooth muscle cells (VSMCs), and macrophages. We further validated our findings using a mouse model of AAA induced by porcine pancreatic enzyme infusion, followed by gene expression analysis and co-immunoprecipitation experiments. ResultsOur analysis revealed significant alterations in gene expression profiles between AAA and control samples, with a pronounced immune response and cell adhesion pathways being implicated. Single-cell RNA sequencing data highlighted an increased proportion of pro-inflammatory macrophages, along with changes in the composition of fibroblasts and VSMCs in AAA. CellPhoneDB analysis identified critical ligand-receptor interactions, notably collagen type I alpha 1 chain (COL1A1)/COL1A2-CD18 and thrombospondin 1 (THBS1)-CD3, suggesting complex communication networks between fibroblasts and VSMCs. In vivo experiments confirmed the upregulation of these genes in AAA mice and demonstrated the functional interaction between COL1A1/COL1A2 and CD18. ConclusionThe interaction between fibroblasts and VSMCs, mediated by specific ligand-receptor pairs such as COL1A1/COL1A2-CD18 and THBS1-CD3, plays a pivotal role in AAA pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call