Abstract

Simple SummaryHead and neck squamous cell carcinoma (HNSCC) has high morbidity and mortality. The interaction between immune cells and tumor cells in the tumor micro-environment is an important factor affecting the tumor progression and prognosis of HNSCC patients. More biomarkers and targets need to be explored to improve patient outcomes. The m6A modification on enhancer RNAs (eRNAs) is associated with the signature of active enhancer, and the function of m6A driving eRNAs in tumor progression has not been reported. In this study, we screened and identified a risk model containing 5 m6A-related eRNA, which can better predict the survival and immunotherapy outcome of patients. The role of m6A-related eRNA in HNSCC cells was verified in vitro. We also combined the risk score and multiple clinical features to construct a nomogram for predicting OS of HNSCC patients, which provides an effective quantitative analysis tool for guiding the personalized precise treatment for patients.At present, the prognostic value of N6-methyladenosine (m6A)-related enhancer RNAs (eRNAs) for head and neck squamous cell carcinoma (HNSCC) still remains unclear. Our study aims to explore the prognostic value of m6A-related eRNAs in HNSCC patients and their potential significance in immune infiltration and immunotherapy. We constructed a 5 m6A-related eRNAs risk model from The Cancer Genome Atlas (TCGA) HNSCC dataset, using univariate and multivariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis. Based on the SRAMP website and in vitro experiments, it was verified that these 5 m6A-related eRNAs had m6A sites, the expression of which was regulated by corresponding m6A regulators. Moreover, we constructed a nomogram base on 5 m6A-related eRNAs and confirmed the consistency and robustness of an internal TCGA testing set. Further analysis found that the risk score was positively associated with low overall survival (OS), tumor cell metastasis, metabolic reprogramming, low immune surveillance, lower expression of immune-related genes, and higher expression of targeted genes. Finally, we verified that silencing MIR4435-2HG inhibited HNSCC cell migration and invasion. This study contributes to the understanding of the characteristics of m6A-related eRNAs in HNSCC and provides a reference for effective immunotherapy and targeted therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call