Abstract
Salamanders completely regenerate their limbs after amputation. Thus, these animals are unique models to investigate the mechanisms modulating regeneration in vertebrates. To investigate the influence of microRNAs (miRNAs) on newt limb regeneration, the miRNAs and mRNAs were simultaneously profiled using Illumina HiSeq 2500 System during limb regeneration of Cynops orientalis at 3, 7, 14, 30 and 42 days postamputation. A total of 203 miRNAs and 4230 mRNAs were identified to be differentially expressed. Together with the proteomic data obtained from our previous study, integrative analysis of multiple profiling data sets was performed to construct an interaction network of differentially expressed miRNAs, mRNAs and proteins. Results of GO and KEGG analyses showed that the differentially expressed miRNA targets were mainly directed to cytoskeletal remodeling and carbohydrate metabolism. The stage-specific regulation of miRNAs on their targets was analyzed by hierarchical clustering analysis and validated by qRT-PCR. The negative regulation of miR-223 and miR-133a on their targets was tested by performing dual luciferase reporter assay. The integration analysis will provide a powerful tool to identify the regulatory mechanisms of miRNAs and their targets. The results may have implications in understanding the complex mechanisms underlying newt limb regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of proteome research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.