Abstract

Increasing evidence has demonstrated that cancer cell metabolism is a critical factor in tumor development and progression; however, its role in glioblastoma (GBM) remains limited. In the present study, we classified GBM into three metabolism subtypes (MC1, MC2, and MC3) through cluster analysis of 153 GBM samples from the RNA-sequencing data of The Cancer Genome Atlas (TCGA) based on 2752 metabolism-related genes (MRGs). We further explored the prognostic value, metabolic signatures, immune infiltration, and immunotherapy sensitivity of the three metabolism subtypes. Moreover, the metabolism scoring model was established to quantify the different metabolic characteristics of the patients. Results showed that MC3, which is associated with a favorable survival outcome, had higher proportions of isocitrate dehydrogenase (IDH) mutations and lower tumor purity and proliferation. The MC1 subtype, which is associated with the worst prognosis, shows a higher number of segments and homologous recombination defects and significantly lower mRNA expression-based stemness index (mRNAsi) and epigenetic-regulation-based mRNAsi. The MC2 subtype has the highest T-cell exclusion score, indicating a high likelihood of immune escape. The results were validated using an independent dataset. Five MRGs (ACSL1, NDUFA2, CYP1B1, SLC11A1, and COX6B1) correlated with survival outcomes were identified based on metabolism-related co-expression module analysis. Laboratory-based validation tests further showed the expression of these MRGs in GBM tissues and how their expression influences cell function. The results provide a reference for developing clinical management approaches and treatments for GBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call