Abstract

Objective To elucidate the potential roles of the lncRNA-mediated competitive endogenous RNA (ceRNA) network in the pathogenesis of bronchopulmonary dysplasia (BPD), we performed an integrated bioinformatics analysis based on miRNA and mRNA microarray datasets between BPD and normal samples. Study design The mRNA and miRNA expression profiles of BPD were downloaded from the Gene Expression Omnibus (GEO) database to perform an integrated analysis. The limma package was used to identify differentially expressed genes (DEGs) and differentially expressed miRNA (DEmiRs), followed by functional enrichment analysis of DEGs. DEmiR–DEG and DEmiRNA–lncRNA interactions were predicted. Subsequently, the lncRNA-related ceRNA network was structured. Finally, a newborn BPD mouse model was established, and quantitative real-time PCR (qPCR) was used to validate the expression of the selected mRNAs, miRNAs, and lncRNAs. Results A total of 445 DEGs and 155 DEmiRs were obtained by comparing BPD samples and normal samples. Functional enrichment analysis showed that DEGs were primarily enriched in GO terms such as cell division and inflammatory response; and DEGs were mainly involved in the p53 signaling pathway. The miR17hg-miR-130b-3p-roundabout guidance receptor 2 (Robo2) and GM20455-miR-34a-5p-BMP/retinoic acid-inducible neural specific 1 (Brinp1) ceRNA axes were obtained by constructing the ceRNA network. In addition, the upregulation of Robo2 and miR17hg while the downregulation of miR-130b-3p; as well as the upregulation of Brinp1 and GM20455 but the downregulation of miR-34a-5p were validated by qPCR. Conclusion The miR17hg-miR-130b-3p-Robo2 and GM20455-miR-34a-5p-Brinp1 axes may serve important role in the development of BPD. These findings might provide novel insight for a comprehensive understanding of molecular mechanisms in BPD, and genes in the ceRNA network might be considered as potential biomarkers and therapeutic targets against BPD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.