Abstract
Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma (RCC), is insensitive to radiotherapy and chemotherapy after surgery. Deoxyribonuclease 1-like 3 (DNASE1L3), an endonuclease that cleaves both membrane-encapsulated single- and double-stranded DNA, suppresses cell cycle progression, proliferation and metabolism in hepatocellular carcinoma cells. There is currently no established link between DNASE1L3 and RCC inhibition. We are gonging to explored the mechanism underlying the relationship between DNASEL1L3 and RCC. RNA sequencing data for RCC tissue and peritumoral tissue were downloaded from The Cancer Genome Atlas database and analyzed. The expression levels of DNASE1L3 in RCC and normal samples were verified using the Gene Expression Omnibus (GEO) database, Human Protein Atlas database and western blotting. The role and potential mechanism of DNASE1L3 were investigated by analysis of immune-related databases and wound healing, invasion, cell counting kit 8 and immunofluorescence assays. We revealed that DNASE1L3 expression was downregulated in RCC group compared with control group [The Cancer Genome Atlas (TCGA): 7.98 vs. 10.87, P<0.001]. Meanwhile, DNASE1L3 expression correlated with the clinical characteristics of patients. Patients with low DNASE1L3 expression had worse survival (P<0.001) and larger (r=-0.32, P<0.001) and heavier tumors (r=-0.17, P<0.001). DNASE1L3 overexpression inhibited the proliferation (786-O: 0.135±0.014 vs. 0.322±0.027, P<0.001) and invasion (786-O: 1,479±134 vs. 832±67, P<0.05) of RCC cells. The expression of DNASE1L3 was significantly correlated with the tumor immune microenvironment and drug sensitivity in ccRCC. Moreover, the level of the key phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway protein P-AKT was decreased in the group of cells transfected with DNASE1L3. This study strongly suggest that DNASE1L3 may be a promising potential biomarker for the diagnosis and treatment of ccRCC patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.