Abstract
Microbial-derived bile acids can modulate host gene expression, and their faecal abundance is decreased in active inflammatory bowel disease [IBD]. We analysed the impact of endoscopic inflammation on microbial genes involved in bile acid biotransformation, and their interaction with host transcriptome in the intestinal mucosa of IBD patients. Endoscopic mucosal biopsies were collected from non-inflamed and inflamed terminal ileum, ascending and sigmoid colon of IBD patients. Prediction of imputed metagenome functional content from 16S rRNA profile and real-time quantitative polymerase chain reaction [qPCR] were utsed to assess microbial bile acid biotransformation gene abundance, and RNA-seq was used for host transcriptome analysis. Linear regression and partial Spearman correlation accounting for age, sex, and IBD type were used to assess the association between microbial genes, inflammation, and host transcriptomics in each biopsy location. A Bayesian network [BN] analysis was fitted to infer the direction of interactions between IBD traits and microbial and host genes. The inferred microbial gene pathway involved in secondary bile acid biosynthesis [ko00121 pathway] was depleted in inflamed terminal ileum of IBD patients compared with non-inflamed tissue. In non-inflamed sigmoid colon, the relative abundance of bile acid-inducible [baiCD] microbial genes was positively correlated with the host Angiopoietin-like 4 [Angptl4] gene expression. The BN analysis suggests that the microbial baiCD gene abundance could affect Angptl4 expression, and this interaction appears to be lost in the presence of inflammation. Endoscopic inflammation affects the abundance of crucial microbial bile acid-metabolising genes and their interaction with Angptl4 in intestinal mucosa of IBD patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.