Abstract

The classical Lebesgue–Stieltjes integral ∫ b a fdg of real or complex-valued functions on a finite interval (a,b) is extended to a large class of integrands f and integrators g of unbounded variation. The key is to use composition formulas and integration-by-part rules for fractional integrals and Weyl derivatives. In the special case of Holder continuous functions f and g of summed order greater than 1 convergence of the corresponding Riemann–Stieltjes sums is proved. The results are applied to stochastic integrals where g is replaced by the Wiener process and f by adapted as well as anticipating random functions. In the anticipating case we work within Slobodeckij spaces and introduce a stochastic integral for which the classical Ito formula remains valid. Moreover, this approach enables us to derive calculation rules for pathwise defined stochastic integrals with respect to fractional Brownian motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.