Abstract

This paper reports the use of Laser-induced Forward Transfer (LIFT) technology for printing of multilayer flexible circuitries and the fabrication of micro-bumps for flip-chip bonding of packaged LEDs and bare die microcomponents. Bonding of passive and functional surface mount devices (SMD) on low-temperature polyethylene terephthalate (PET) foils have been demonstrated using two selective bonding techniques. Firstly, using a high intensity near-infrared (NIR) lamp, a bare die NFC chip was bonded on micro-bumps formed with LIFT printed isotropic conductive adhesive (ICA) within less than a minute. Secondly, using a high intensity Xenon lamp, passive components and packaged LEDs were bonded within 5 seconds on microbumps formed with conventional Sn–Ag–Cu (SAC) lead-free alloys. In the both cases, due to selective light absorption, a limited temperature increase was observed in the PET substrates allowing successful bonding of components onto the delicate polyethylene foil substrates using conventional interconnect materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call