Abstract

Understanding and determining soil properties is reflected in improving farm management and crop production. Soil salinity, pH and calcium carbonate are among the factors affecting the soil’s physical and chemical properties. Hence, their estimation is very important for agricultural management, especially in arid regions (Wadi Elkobaneyya valley, located in the northwest of Aswan Governorate, Upper Egypt). The study objectives were to characterize and develop prediction models for soil salinity, pH and calcium carbonate (CaCO3) using integration soil analysis and spectral reflectance vis-NIR spectroscopy. To achieve the study objectives, three multivariate regression models: Partial Least Squares Regression (PLSR), Multivariate Adaptive Regression Splines (MARS) and Least Square-Support Vector Regression (LS-SVR)); and two machine learning algorithms, Random Forest (RF) and Artificial Neural Networks (ANN) were used. Ninety-six surface soil samples were collected from the study area at depths 0–5 cm. The data were divided into a calibration dataset (70% of the total) and a validation dataset (30% of the total dataset). The obtained results represent that the PLSR model was the best model for soil pH parameters where R2 of calibration and validation predictability = 0.68 and 0.52, respectively. The LS-SVR model was the best model to predict soil Electrical Conductivity (EC) and soil Calcium Carbonate (CaCO3) content, with R2 0.70 and 0.74 for calibration and R2 0.26 and 0.47 for validation, respectively. On the other hand, the results of the implemented machine learning algorithm model showed that RF was the best model to predict soil pH and CaCO3, as the R2 was 0.82 for calibration and 0.57 for validation, respectively. Nevertheless, the best model for predicting soil EC was ANN, with an R2 of 0.96 for calibration and 64 for validation. The results show the advantages of machine learning models for predicting soil EC, pH and CaCO3 by Vis-NIR spectroscopy. Therefore, Vis-NIR spectroscopy is considered faster and more cost-efficient and can be further used in environmental monitoring and precision farming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.