Abstract

In this study, a Zn-based metal-organic framework (MOF)-zeolite composite ZSM-5@IRMOF-1 was synthesized for the alternative production of BTX from isopropyl alcohol (IPA). Incorporation ensured the capacity to tune the Lewis acidity at a framework level and design accessible pore structures, making composites highly attractive to be used as catalysts. The combination of monodispersed HZSM-5 zeolites on and within acidic IRMOF-1 provided the highly selective production of lower aromatics from IPA. The interaction of IPA with catalysts was investigated at different temperatures in a fixed-bed continuous flow reactor. The obtained product was analyzed using a standard test method ASTM D6730 through gas chromatography-detail hydrocarbon analyser. The results indicated that the reaction between IPA and MOF-supported zeolite occurred without substantial participation of MOFs. The maximum aromatic (BTEX) selectivity of 38.2% was achieved among all hydrocarbons at 92.3% carbon conversion. In addition, the gas yield was <20% for this catalyst system. The appropriate density of Brønsted and Lewis acidic sites and hierarchical pore structures provided the composite catalyst with outstanding aromatic selectivity yield and high stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.