Abstract
Integration of WorldView-2 satellite image with small footprint airborne LiDAR data for estimation of tree carbon at species level has been investigated in tropical forests of Nepal. This research aims to quantify and map carbon stock for dominant tree species in Chitwan district of central Nepal. Object based image analysis and supervised nearest neighbor classification methods were deployed for tree canopy retrieval and species level classification respectively. Initially, six dominant tree species (Shorea robusta, Schima wallichii, Lagerstroemia parviflora, Terminalia tomentosa, Mallotus philippinensis and Semecarpus anacardium) were able to be identified and mapped through image classification. The result showed a 76% accuracy of segmentation and 1970.99 as best average separability. Tree canopy height model (CHM) was extracted based on LiDAR’s first and last return from an entire study area. On average, a significant correlation coefficient (r) between canopy projection area (CPA) and carbon; height and carbon; and CPA and height were obtained as 0.73, 0.76 and 0.63, respectively for correctly detected trees. Carbon stock model validation results showed regression models being able to explain up to 94%, 78%, 76%, 84% and 78% of variations in carbon estimation for the following tree species: S. robusta, L. parviflora, T. tomentosa, S. wallichii and others (combination of rest tree species).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.