Abstract
<abstract> <p>Floating platforms are complex structures used in deep water and high wind speeds. However, a methodology should be defined to have a stable offshore structure and not fail dynamically in severe environmental conditions. This paper aims to provide a method for estimating failure load or ultimate load on the anchors of floating systems in integrating wind and tidal turbines in New Zealand. Using either wind or tidal turbines in areas with harsh water currents is not cost-effective. Also, tidal energy, as a predictable source of energy, can be an alternative for wind energy when cut-in speed is not enough to generate wind power. The most expensive component after the turbine is the foundation. Using the same foundation for wind and tidal turbines may reduce the cost of electricity. Different environment scenarios as load cases have been set up to test the proposed system's performance, capacity and efficiency. Available tidal records from the national institute of Water and Atmospheric Research (NIWA) have been used to find the region suitable for offshore energy generation and to conduct simulation model runs. Based on the scenarios, Terawhiti in Cook Strait with 110 m water height was found as the optimized site. It can be seen that the proposed floating hybrid system is stable in the presence of severe environmental conditions of wind and wave loadings in Cook Strait and gives a procedure for sizing suction caisson anchors.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.