Abstract

Most geostatistical estimation and simulation methodologies assume the experimental data as hard measurements, meaning that the measures of a given property of interest are not associated with uncertainty. The challenge of integrating uncertain experimental data at the geostatistical estimation or simulation models is not new. Several attempts have been made, either considering the uncertain data as soft data or interpreting it as inequality constraints, based on the indicator formalism or decreasing the weight of soft data in kriging procedures. This paper presents a stochastic simulation methodology where the uncertain experimental data are modelled by a probability distribution at each sample location. Data values are firstly drawn, by stochastic simulation, at these locations prior to the simulation of the rest of the grid nodes. This method is also extended to the simulation of categorical uncertain data, as well as to the simulation with uncertain block support data. To illustrate the proposed methodology, an application to a real case study of pore pressure prediction of oil reservoirs is presented, as well as an upscaling problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.