Abstract

The rapidly evolving communication field demands higher data capacity, faster transmission speeds, and improved anti-interference capabilities. However, the physical limitations of silicon-based photonics technology hinder the realization of photodetectors and other active devices. The discovery of two-dimensional (2D) materials, such as graphene, has opened promising opportunities for on-chip photodetection, showcasing distinctive physical and chemical properties and ultrathin nature. In this review, we first describe several representative 2D materials, including graphene, black phosphorus, and transition metal dichalcogenides (TMDCs). These materials offer diverse band structures and properties, presenting a plethora of options for varied applications. Then we highlight the utilization of these 2D materials in the development of high-performance photodetection devices, including photodiodes, field-effect transistors, and photodetectors. Furthermore, we delve into the practical applications of photodetectors, including room-temperature imaging, visual sensors, spectrometers, ranging, and other optoelectronic integrated systems. These real-world applications vividly demonstrate the versatility and potential of 2D materials across diverse fields. Overall, the unique structures and properties of 2D materials offer new possibilities for applications across various domains. Future research should be devoted to further explore the properties and applications of 2D materials to advance their development in the field of science and technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call