Abstract

Copper is a widespread heavy metal in environment and has toxic effects when exposed. However, study of copper-induced male reproductive toxicity is still insufficient to report, and the underlying mechanisms are unknown. Keeping in view, RNA-Seq and metabolomic were performed to identify metabolic pathways that were distressed in mouse spermatogonia with the effect of copper sulfate, and the integrated analysis of the mechanism of copper administered GC-1 cells from metabolomic and transcriptomic data. Our results demonstrated that many genes and metabolites were regulated in the copper sulfate-treated cells. The differential metabolites analysis showed that 49 and 127 metabolites were significantly different in ESI+ and ESI- mode, respectively. Meanwhile, a total of 2813 genes were up-regulated and 2488 genes were down-regulated in the treatment groups compared to those in the control groups. Interestingly, ophthalmic acid and gamma glutamylleucine were markedly increased by copper treatment in two modes. By integrating with transcriptomic and metabolomic data, we revealed that 37 and 22 most related pathways were over-enriched in ESI+ and ESI- mode, respectively. Whereas, amino acid biosynthesis and metabolism play essential role in the potential relationship between DEGs and metabolites, which suggests that amino acid biosynthesis and metabolism may be the major metabolic pathways disturbed by copper in GC-1 cells. This study provides important clues and evidence for understanding the mechanisms responsible for copper-induced male spermatogenesis toxicity, and useful biomarkers indicative of copper exposure could be discovered from present study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call