Abstract

In a flank milling process, the tool rotation profile error induced by its radial dimension error, setup error, tool deflection, and wear has a great influence on the dimensional accuracy of the machined components. In this paper, we present an integrated identification of tool error, prediction of machining accuracy, and compensation methodology for tool profile error to improve the machining accuracy. Firstly, the tool errors are divided into static and dynamic errors based on the error characteristics and the corresponding error identification methods are established to recognize the tool error parameters. Secondly, the machining accuracy is predicted by a prediction model, and the tool error parameters are input into this model. Thirdly, a new tool error compensation method is developed and incorporated in the corresponding NC codes. Finally, some machining experiments have been carried out to validate the proposed identification-prediction-compensation methodology, and the results show that this methodology is effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.