Abstract
In this work we propose a novel approach to integrate the Lane–Emden equations for relativistic anisotropic polytropes. We take advantage of the fact that Gravitational Decoupling allows to decrease the number of degrees of freedom once a well known solution of the Einstein field equations is provided as a seed so after demanding the polytropic equation for the radial pressure the system is automatically closed. The approach not only allows to extend both isotropic or anisotropic known solutions but simplifies the computation of the Tolman mass whenever the Minimal Geometric Deformation is considered given that the g_{tt} component of the metric remains unchanged. We illustrate how the the method works by analyzing the solutions obtained from Tolman IV, Durgapal IV and Wymann IIa isotropic systems as a seed for the integration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.