Abstract

This paper investigates the energy efficiency of geothermal storage integration into the state-of-the-art CO2 transcritical booster systems. Three scenarios of integration are studied including stand-alone and integrated supermarket building systems. The results show that for a stand-alone supermarket, heat recovery from the CO2 system should be prioritized over extracting heat from the ground, which this heat extraction can be done either by an extra evaporator in the CO2 system or by a separate ground source heat pump. In the case of supermarket integration with a nearby district heating consumer, geothermal storage integration with extra evaporator in the CO2 refrigeration system can reduce the total annual running cost of the two buildings by 19-31% and with a payback time of less than three years. This integration is beneficial if the full efficient heat recovery capacity of the CO2 system is not sufficient to provide the entire demands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.