Abstract

Component reliability can be estimated by either statistics-based methods with data or physics-based methods with models. Both types of methods are usually independently applied, making it difficult to estimate the joint probability density of component states, which is a necessity for an accurate system reliability prediction. The objective of this study is to investigate the feasibility of integrating statistics- and physics-based methods for system reliability analysis. The proposed method employs the first-order reliability method (FORM) directly for a component whose reliability is estimated by a physics-based method. For a component whose reliability is estimated by a statistics-based method, the proposed method applies a supervised learning strategy through support vector machines (SVM) to infer a linear limit-state function that reveals the relationship between component states and basic random variables. With the integration of statistics- and physics-based methods, the limit-state functions of all the components in the system will then be available. As a result, it is possible to predict the system reliability accurately with all the limit-state functions obtained from both statistics- and physics-based reliability methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call