Abstract

The low heritability of reproduction traits such as total number born (TNB), number born alive (NBA) and adjusted litter weight until 21 days at weaning (ALW) poses a challenge for genetic improvement. In this study, we aimed to identify genetic variants that influence these traits and evaluate the accuracy of genomic selection (GS) using these variants as genomic features. We performed single-step genome-wide association studies (ssGWAS) on 17 823 Large White (LW) pigs, of which 2770 were genotyped by 50K single nucleotide polymorphism (SNP) chips. Additionally, we analyzed runs of homozygosity (ROH) in the population and tested their effects on the traits. The genomic feature best linear unbiased prediction (GFBLUP) was then carried out in an independent population of 350 LW pigs using identified trait-related SNP subsets as genomic features. As a result, our findings identified five, one and four SNP windows that explaining more than 1% of genetic variance for ALW, TNB, and NBA, respectively and discovered 358 hotspots and nine ROH islands. The ROH SSC1:21814570-27186456 and SSC11:7220366-14276394 were found to be significantly associated with ALW and NBA, respectively. We assessed the genomic estimated breeding value accuracy through 20 replicates of five-fold cross-validation. Our findings demonstrate that GFBLUP, incorporating SNPs located in effective ROH (p-value < 0.05) as genomic features, might enhance GS accuracy for ALW compared with GBLUP. Additionally, using SNPs explaining more than 0.1% of the genetic variance in ssGWAS for NBA as genomic features might improve the GS accuracy, too. However, it is important to note that the incorporation of inappropriate genomic features can significantly reduce GS accuracy. In conclusion, our findings provide valuable insights into the genetic mechanisms of reproductive traits in pigs and suggest that the ssGWAS and ROH have the potential to enhance the accuracy of GS for reproductive traits in LW pigs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.