Abstract

The integration of large solar heating systems in district heating (DH) networks with large combined heat and power (CHP) plants is rarely considered. This is often due to low costs for heat but also due to subsidies for the electricity by CHP plants. Possible changes in subsidies and requirements in the reduction of fossil fuel based CO2 emissions raise an awareness of improving the operational flexibility of fossil fuelled CHP plants. This paper provides a rather simple but detailed methodology of including large solar heating systems in an existing district heating system, where heat is supplied by a large CHP plant. It uses hourly data of load and temperature patterns as well as radiation data and collector efficiency data to determine collector field size and storage size. The possibility of largely independent operation of sub-networks is analysed, which allows different system temperatures. It is demonstrated that a sub-network can operate without a back-up boiler and that both network parts benefit from the interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call