Abstract

Aimed at reducing simulation uncertainty of hydrological models in data-sparse basins where soil hydraulic data are unavailable, a method of estimating soil water parameters of soil and water assessment tool (SWAT) from readily available soil information using pedotransfer functions was introduced. The method was evaluated through a case study of Jinjiang Basin, China and was performed based on comparison between two model calibrations: (1) soil parameters estimated from pedotransfer functions and other parameters obtained from calibration; and (2) all parameters derived from calibration. The generalized likelihood uncertainty estimation (GLUE) was used as a model calibration and uncertainty analysis tool. The results show that information contained in streamflow data is insufficient to derive physically reasonable soil parameter values via calibration. The proposed method can reduce simulation uncertainty, resulting from greater average performance of behavioral parameter sets identified by GLUE. Exploring the parameter space reveals that the means of estimating soil parameters has little influence on other parameters. These facts indicate the decrease in uncertainty most likely results from a more realistic description of soil water characteristics than calibration. Thus, the proposed method is superior to calibration for estimating soil parameters of SWAT model when basin data are sparse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.