Abstract

A Galerkin approximation of both strongly and hypersingular boundary integral equation (BIE) is considered for the solution of a mixed boundary value problem in 3D elasticity leading to a symmetric system of linear equations. The evaluation of Cauchy principal values (v. p.) and finite parts (p. f.) of double integrals is one of the most difficult parts within the implementation of such boundary element methods (BEMs). A new integration method, which is strictly derived for the cases of coincident elements as well as edge-adjacent and vertex-adjacent elements, leads to explicitly given regular integrand functions which can be integrated by the standard Gauss-Legendre and Gauss-Jacobi quadrature rules. Problems of a wide range of integral kernels on curved surfaces can be treated by this integration method. We give estimates of the quadrature errors of the singular four-dimensional integrals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.