Abstract

The integration density in semiconductor devices is significantly increased in the last years. This trend is already described by Moore's law what forecasts a doubling of the integration density every two years. This evolution makes greater demands on the substrate technology which is used for the first level interconnect between the semiconductor and the device package. Higher pattern resolution is required to connect more functions on a smaller chip. Also the thermal performance of the substrate is a crucial issue. The increased integration density leads to an increased power density, what means that more heat has to dissipate on a smaller area. Thus, substrates with a high thermal conductivity (e. g. direct bonded copper (DBC)) are utilized which spread the heat over a large area. However, the reduced pattern resolution caused by thick metal layers is disadvantageous for this substrate technology. Alternatively, low temperature co-fired ceramic (LTCC) can be used. This multilayer technology provides a high pattern resolution in combination with a high integration grade. The poor thermal conductivity of LTCC (3 … 5 W*m−1*K−1) requires thermal vias made of silver paste which are placed between the power chip and the heat sink and reduce the thermal resistance of the substrate. The via-pitch and diameter is limited by the LTCC technology, what allows a maximum filling grade of approx. 20 to 25 %. Alternatively, an opening in the ceramic is created, to bond the chip directly to the heat sink. This leads to technological challenges like the CTE mismatch between the chip and the heat sink material. Expensive materials like copper molybdenum composites with matched CTE have to be used. In the presented investigation, a thick silver tape is used to form a thick silver heat spreader through the LTCC substrate. An opening is structured by laser cutting in the LTCC tape and filled with a laser cut silver tape. After lamination, the substrate is fired using a constraint sintering process. The bond strength of the silver to LTCC interface is approx. 5.6 MPa. The thermal resistance of the silver structure is measured by a thermal test chip (Delphi PST1, 2.5 mm × 2.5 mm) glued with a high thermal conducting epoxy to the silver structure. The chip contains a resistor and diodes to generate heat and to determine the junction temperature respectively. The backside of the test structure is temperature stabilized by a temperature controlled heat sink. The resulting thermal resistance is in the range of 1.1 K/W to 1.5 K/W depending on the length of silver structure (5 mm to 7 mm). Advantages of the presented heat spreader are the low thermal resistance and the good embedding capability in the co-fire LTCC process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call