Abstract
Silicon nanowires (SiNWs) are a one-dimensional semiconductor, which shows promising applications in distinct areas such as photocatalysis, lithium-ion batteries, gas sensors, medical diagnostics, drug delivery, and solar cell. From an implementation point of view, SiNWs are fabricated using either a top-down or bottom-up approach, and SiNWs are both optically and electronically active. SiNWs enhances the efficiency of the solar cell due to better electronic, optical, and physical properties that can be controlled by tuning the physical dimensions of SiNWs. The SiNWs shows an inherent capability to be utilized in radial or coaxial p-n junction solar cells, to stipulate orthogonal photon absorption, anti-reflection, and enhanced carrier collection. This paper reviews property-control of SiNWs, their various types of incorporation in a solar cell, and the reasons behind enhanced efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.