Abstract

Self-assembled monolayers (SAMs) of either ferrocenecarboxylic acid or 5-(4-Carboxyphenyl)-10,15,20-triphenyl-porphyrin-Co(II) (CoP) with a high- dielectric were integrated into the Flash memory gate stack. The molecular reduction-oxidation (redox) states are used as charge storage nodes to reduce charging energy and memory window variations. Through the program/erase operations over tunneling barriers, the device structure also provides a unique capability to measure the redox energy without strong orbital hybridization of metal electrodes in direct contact. Asymmetric charge injection behavior was observed, which can be attributed to the Fermi-level pinning between the molecules and the high- dielectric. With increasing redox molecule density in the SAM, the memory window exhibits a saturation trend. Three programmable molecular orbital states, i.e., CoP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sup> , CoP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-</sup> , and CoP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2-</sup> , can be experimentally observed through a charge-based nonvolatile memory structure at room temperature. The electrostatics is determined by the alignment between the highest occupied or the lowest unoccupied molecular orbital (HOMO or LUMO, respectively) energy levels and the charge neutrality level of the surrounding dielectric. Engineering the HOMO-LUMO gap with different redox molecules can potentially realize a multibit memory cell with less variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.