Abstract

A novel approach is presented which combines rotational X-ray imaging, real-time fluoroscopic X-ray imaging and real-time catheter tracking for improved guidance in interventional electrophysiology procedures. Rotational X-ray data and real-time fluoroscopy data obtained from a Philips FD10 flat detector X-ray system and are registered with real-time localization data from catheter tracking equipment. The visualization and registration of rotational X-ray data with catheter location data enables the physician to better appreciate the underlying anatomy of interest in three dimensions and to navigate the interventional or mapping device more effectively. Furthermore, the fused information streams from rotational X-ray, real-time X-ray fluoroscopy and real-time three-dimensional catheter locations offer a direct imaging feedback during interventions, facilitating navigation and potentially improving clinical outcome. With the technique one is able to reduce the fluoroscopic time required in a procedure, since the catheter is registered and visualized with off-line projection data from various view angles. We show a demonstrator which integrates, registers, and visualizes the various data streams. It can be implemented in the clinical work-flow with reasonable effort. Results are presented based on an experimental setup. Furthermore, the robustness and the accuracy of this technique have been determined based on phantom studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call