Abstract

Compared to multi-valued logic (MVL) with conventional 2-state FETs with a single threshold, MVL computing architectures, based on 4-state SWS (Spatial wavefunction switched) and QDG (quantum dot gate)-FETs having multiple thresholds, results in reduced device count, higher clock (CLK) speed, and lower power consumption. We have experimentally shown multi-state characteristics in SWS-FETs as well as QDG-FETs. This paper presents a novel QDG-SWS-FET that: (1) functions as a multi-bit FET for efficient low-power logic, (2) can be configured as a quantum dot (QD) nonvolatile random access memory (NVRAM), and (3) is suitable for in-memory MVL computing architecture that are compatible with sub-7nm technology nodes. A QDG-SWS-FET with the addition of a control gate dielectric layer functions as a NVRAM cell. Furthermore, it is shown that one single SWS-QD-NVRAM cell gives the functionality of a 1-bit NAND. We have developed circuit/device models and performed quantum simulations for novel multi-layer quantum dot/quantum well FETs and NVRAMs. Our simulations have shown 4-states/2-bit output-input transfer characteristics in SWS-CMOS inverters and NAND gates using two Si/SiGe quantum well channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call