Abstract
Background: Fenofibrate (FEN) is the FDA-approved drug used in the treatment of hyperlipidemia. FEN possesses limited bioavailability orally due to its low solubility. As a result, more frequent and larger doses are needed, which increases the likelihood of adverse effects. Objectives: This study aimed to develop and optimize polymeric nanoparticles loaded with Fenofibrate (FEN) using the solvent evaporation method. Method: A Quality by Design (QbD) approach was used to ensure the quality of the finished product by evaluating the impact of critical material attributes (CMAs) and critical process parameters (CPPs) on the critical quality attributes (CQAs) of nanoparticles. The impact of CMAs (quantity of polycaprolactone, % polyvinyl alcohol, and % sodium lauryl sulphate) on particle size and Drug Entrapment Efficiency (DEE) was studied using Box-Behnken Design. Results: The optimized nanoparticles have 246.5 ± 4.38 nm particle size and 77.53 ± 0.9% DEE. SEM and TEM were used to analyze the surface morphology of nanoparticles. Furthermore, In-Vitro drug release study of optimized formulation was performed to confirm the efficacy of the polymeric nanoparticles. Conclusion: The solvent evaporation method was utilized to effectively formulate FEN-loaded polymeric nanoparticles and optimized through QbD principles to achieve minimum particle size and maximum % DEE
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pharmaceutical Sciences and Nanotechnology(IJPSN)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.