Abstract

This paper reports novel material and process technologies for near-zero Temperature-Coefficient Resistors (TCR) and zero temperature coefficient of capacitance (TCC) capacitors and their integration into organic or silicon packages for precision RF components. A new concept of self-compensating resistors, leading to zero TCR was explored and demonstrated for the first time, using heterogeneous resistor stack structures consisting of metal layers with positive TCR and semiconducting oxide layers with negative TCR. Zero TCC capacitors were demonstrated with a film-stack consisting of ceramic nanocomposites of positive TCC and negative TCC. In both cases, the film thickness was designed such that there is internal compensation in temperature deviation, which results in zero temperature-coefficient. Material models were developed for the film-stack to design the films for zero temperature-coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.