Abstract

The acoustic characteristics of hydrates are important parameters in geophysical hydrate exploration and hydrate resource estimation. The microscale distribution of hydrate has an important influence on the acoustic response of a hydrate-bearing reservoir. Although microscale hydrate distributions can be determined using means such as X-ray computed tomography (X-CT), it is difficult to obtain acoustic parameters for the same sample. In this study, we developed an experimental system that integrated pore-scale visualization and an ultrasonic testing system for methane-hydrate-bearing sediments. Simultaneous X-CT observation and acoustic detection could be achieved in the same hydrate sample, which provided a new method for synchronously monitoring microscale distributions during acoustic testing of natural gas hydrate samples. Hydrate formation experiments were carried out in sandy sediments, during which the acoustic characteristics of hydrate-bearing sediments were detected, while X-ray computed tomography was performed simultaneously. This study found that hydrates formed mainly at the gas–water interface in the early stage, mainly in the pore fluid in the middle stage, and came into contact with sediments in the later stage. The development of this experimental device solved the difficult problem of determining the quantitative relationship between the microscale hydrate distribution and the acoustic properties of the reservoir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.