Abstract

We report herein the integration of pore confinement and hydrogen-bond influence on the crystallization behavior of C18 PCMs PCM in mesoporous silica. Mesoporous silica nanoparticles with 2.74 nm pores are employed as supporting material. To evaluate the effect of the internal/external surfaces of silica on the crystallization behavior of C18 PCM, three kinds of PCMs with various functional terminals including stearic acid (SA), octodecane (OCC), and octadecanol (OCO) were employed, and the effects of various mass fractions of PCMs were comprehensively investigated as well. It is remarkable that the complete filling of the available nanosized pore volume and newly formed hydrogen bonds (H–O···O) are bound to result in the formation of the mesomorphic or amorphous phase of PCM; thus, no enthalpy can be evidenced by the DSC data. In addition, it turns out that the composite PCMs obtain at least a 2-fold increase over neat PCM in the thermal conductivity, due to the introduction of silica supporting material...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call