Abstract

Abstract. Three-dimensional (3D) models of historical buildings are created for documentation and virtual realization of them. Laser scanning and photogrammetry are extensively used to perform for these aims. The selection of the method that will be used in threedimensional modelling study depends on the scale and shape of the object, and also applicability of the method. Laser scanners are high cost instruments. However, the cameras are low cost instruments. The off-the-shelf cameras are used for taking the photogrammetric images. The camera is imaging the object details by carrying on hand while the laser scanner makes ground based measurement. Laser scanner collect high density spatial data in a short time from the measurement area. On the other hand, image based 3D (IB3D) measurement uses images to create 3D point cloud data. The image matching and the creation of the point cloud can be done automatically. Historical buildings include more complex details. Thus, all details cannot be measured by terrestrial laser scanner (TLS) due to the blocking the details with each others. Especially, the artefacts which have complex shapes cannot be measured in full details. They cause occlusion on the point cloud model. However it is possible to record photogrammetric images and creation IB3D point cloud for these areas. Thus the occlusion free 3D model is created by the integration of point clouds originated from the TLS and photogrammetric images. In this study, usability of laser scanning in conjunction with image based modelling for creation occlusion free three-dimensional point cloud model of historical building was evaluated. The IB3D point cloud was created in the areas that could not been measured by TLS. Then laser scanning and IB3D point clouds were integrated in the common coordinate system. The registration point clouds were performed with the iterative closest point (ICP) and georeferencing methods. Accuracy of the registration was evaluated by convergency and its standard deviations for the ICP and residuals on the control points for the georeferencing method.

Highlights

  • Documentation of historical buildings are very important for rebuilt and reconstruction of them when they are destroyed

  • Image based 3D (IB3D) point clouds have been created for the areas that could not be measured by the Terrestrial laser scanner (TLS)

  • The surfaces that could not be measured by laser scanner are measured by creating point cloud from dense matched images

Read more

Summary

INTRODUCTION

Documentation of historical buildings are very important for rebuilt and reconstruction of them when they are destroyed Their reconstruction with the keep their original shapes and size is possible with their three-dimensional (3D) models. The creation of their 3D digital model is effective methods on documentation of cultural heritage. It requires measurement 3D spatial data in a particular space from the whole object surface. Texture data of photogrammetric images are matched with the laser point cloud for creation of 3D virtual model. IB3D point clouds have been created for the areas that could not be measured by the TLS. The point clouds originated from laser scanning and images were integrated by ICP and georeferencing

Terrestrial laser scanning
Dense image matching
MEASUREMENT
DATA INTEGRATION
CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call