Abstract

Hereditary palmoplantar keratodermas (PPKs) are a clinically and genetically heterogeneous group of disorders characterized by excessive epidermal thickening of palms and soles. Several genes have been associated with PPK including PERP, a gene encoding a crucial component of desmosomes that has been associated with dominant and recessive keratoderma. We report a patient with recessive erythrokeratoderma (EK) in which whole exome sequencing (WES) prioritized by human phenotype ontology (HPO) terms revealed the presence of the novel variant c.153C > A in the N-terminal region the PERP gene. This variant is predicted to have a nonsense effect, p.(Cys51Ter), resulting in a premature stop codon. We demonstrated a marked reduction in gene expression in cultured skin fibroblasts obtained from the patient. Despite the PERP gene is expressed at low levels in fibroblasts, our finding supports a loss-of-function (LoF) mechanism for the identified variant, as previously suggested in recessive EK. Our study underscores the importance of integrating HPO analysis when using WES for molecular genetic diagnosis in a clinical setting, as it facilitates continuous updates regarding gene–clinical feature associations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call