Abstract
Measurements of weak magnetic fields demand a small distance between the sensor and the to-be-measured object. Optically pumped magnetometers (OPMs) utilize laser light and the Zeeman effect in alkali vapor cells to measure those fields. OPMs can be used in transmission or reflection geometry. A minimization of the distance between active volume and magnetized source calls for reflection geometry with integrated mirrors. Unfortunately, cesium reacts chemically with most materials, especially high-performing materials, such as gold. Herein, we show the first functional OPM cell using a gold mirror inside the cell. We fabricated the gold mirrors with and without a passivation layer in order to evaluate the feasibility of expanding on the limited list of possible mirror materials. A comparison of this implementation revealed that mirrors without a passivation layer only reach a reflectivity of about 6% while mirrors with a passivation layer retain reflectivity values of about 90% in the visible light to near-infrared spectrum. This result and the proof of elemental cesium in the alkali vapor cell demonstrates the feasibility of passivated gold mirrors for applications in alkali vapor cells for OPMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.