Abstract

This paper extends hierarchical task network (HTN) planning with lightweight learning, considering that in robotics, actions have a non-zero probability of failing. Our work applies to A*-based HTN planners with lifting. We prove that the planner finds the plan of maximal expected utility, while retaining its lifting capability and efficient heuristic-based search. We show how to learn the probabilities online, which allows a robot to adapt by replanning on execution failures. The idea behind this work is to use the HTN domain to constrain the space of possibilities, and then to learn on the constrained space in a way requiring few training samples, rendering the method applicable to autonomous mobile robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.